Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
1.
Front Immunol ; 13: 902837, 2022.
Article Dans Anglais | MEDLINE | ID: covidwho-1952333

Résumé

Background: Two years since the onset of the COVID-19 pandemic no predictive algorithm has been generally adopted for clinical management and in most algorithms the contribution of laboratory variables is limited. Objectives: To measure the predictive performance of currently used clinical laboratory tests alone or combined with clinical variables and explore the predictive power of immunological tests adequate for clinical laboratories. Methods: Data from 2,600 COVID-19 patients of the first wave of the pandemic in the Barcelona area (exploratory cohort of 1,579, validation cohorts of 598 and 423 patients) including clinical parameters and laboratory tests were retrospectively collected. 28-day survival and maximal severity were the main outcomes considered in the multiparametric classical and machine learning statistical analysis. A pilot study was conducted in two subgroups (n=74 and n=41) measuring 17 cytokines and 27 lymphocyte phenotypes respectively. Findings: 1) Despite a strong association of clinical and laboratory variables with the outcomes in classical pairwise analysis, the contribution of laboratory tests to the combined prediction power was limited by redundancy. Laboratory variables reflected only two types of processes: inflammation and organ damage but none reflected the immune response, one major determinant of prognosis. 2) Eight of the thirty variables: age, comorbidity index, oxygen saturation to fraction of inspired oxygen ratio, neutrophil-lymphocyte ratio, C-reactive protein, aspartate aminotransferase/alanine aminotransferase ratio, fibrinogen, and glomerular filtration rate captured most of the combined statistical predictive power. 3) The interpretation of clinical and laboratory variables was moderately improved by grouping them in two categories i.e., inflammation related biomarkers and organ damage related biomarkers; Age and organ damage-related biomarker tests were the best predictors of survival, and inflammatory-related ones were the best predictors of severity. 4) The pilot study identified immunological tests (CXCL10, IL-6, IL-1RA and CCL2), that performed better than most currently used laboratory tests. Conclusions: Laboratory tests for clinical management of COVID 19 patients are valuable but limited predictors due to redundancy; this limitation could be overcome by adding immunological tests with independent predictive power. Understanding the limitations of tests in use would improve their interpretation and simplify clinical management but a systematic search for better immunological biomarkers is urgent and feasible.


Sujets)
COVID-19 , Marqueurs biologiques , Études de cohortes , Humains , Inflammation , Laboratoires cliniques , Pandémies , Projets pilotes , Études rétrospectives , SARS-CoV-2
2.
Nat Commun ; 13(1): 915, 2022 02 17.
Article Dans Anglais | MEDLINE | ID: covidwho-1703249

Résumé

Quantitative or qualitative differences in immunity may drive clinical severity in COVID-19. Although longitudinal studies to record the course of immunological changes are ample, they do not necessarily predict clinical progression at the time of hospital admission. Here we show, by a machine learning approach using serum pro-inflammatory, anti-inflammatory and anti-viral cytokine and anti-SARS-CoV-2 antibody measurements as input data, that COVID-19 patients cluster into three distinct immune phenotype groups. These immune-types, determined by unsupervised hierarchical clustering that is agnostic to severity, predict clinical course. The identified immune-types do not associate with disease duration at hospital admittance, but rather reflect variations in the nature and kinetics of individual patient's immune response. Thus, our work provides an immune-type based scheme to stratify COVID-19 patients at hospital admittance into high and low risk clinical categories with distinct cytokine and antibody profiles that may guide personalized therapy.


Sujets)
Anticorps antiviraux/sang , COVID-19/anatomopathologie , Cytokines/sang , SARS-CoV-2/immunologie , Indice de gravité de la maladie , Sujet âgé , Protéines de la nucléocapside des coronavirus/immunologie , Évolution de la maladie , Femelle , Hospitalisation , Humains , Immunoglobuline A/sang , Immunoglobuline G/sang , Immunoglobuline M/sang , Immunophénotypage/méthodes , Apprentissage machine , Mâle , Adulte d'âge moyen , Phosphoprotéines/immunologie
3.
Nat Commun ; 12(1): 3010, 2021 05 21.
Article Dans Anglais | MEDLINE | ID: covidwho-1237999

Résumé

Resident memory T cells (TRM) positioned within the respiratory tract are probably required to limit SARS-CoV-2 spread and COVID-19. Importantly, TRM are mostly non-recirculating, which reduces the window of opportunity to examine these cells in the blood as they move to the lung parenchyma. Here, we identify circulating virus-specific T cell responses during acute infection with functional, migratory and apoptotic patterns modulated by viral proteins and associated with clinical outcome. Disease severity is associated predominantly with IFNγ and IL-4 responses, increased responses against S peptides and apoptosis, whereas non-hospitalized patients have increased IL-12p70 levels, degranulation in response to N peptides and SARS-CoV-2-specific CCR7+ T cells secreting IL-10. In convalescent patients, lung-TRM are frequently detected even 10 months after initial infection, in which contemporaneous blood does not reflect tissue-resident profiles. Our study highlights a balanced anti-inflammatory antiviral response associated with a better outcome and persisting TRM cells as important for future protection against SARS-CoV-2 infection.


Sujets)
COVID-19/immunologie , Mémoire immunologique/immunologie , Poumon/immunologie , SARS-CoV-2/immunologie , Lymphocytes T/immunologie , Apoptose/immunologie , Lymphocytes T CD4+/immunologie , Lymphocytes T CD4+/métabolisme , Lymphocytes T CD8+/immunologie , Lymphocytes T CD8+/métabolisme , COVID-19/virologie , Mouvement cellulaire/immunologie , Humains , Interféron gamma/immunologie , Interféron gamma/métabolisme , Interleukine-4/immunologie , Interleukine-4/métabolisme , Poumon/virologie , SARS-CoV-2/physiologie , Lymphocytes T/métabolisme
SÉLECTION CITATIONS
Détails de la recherche